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Introduction


When rockets with recovery requirements are flown to higher and higher altitudes the point is reached where familiar techniques no longer work.  The problem is high dynamic pressure during descent.  Even if a drogue is deployed near apogee the dynamic pressure build up as the denser lower altitudes are reached will exceed the strength of any drogue.  Later drogue deployment would only exacerbate this problem.

The classical solution to this problem is to separate the payload from the rocket body, or the fins from everything else, trim the recovery package to ensure a high angle of attack (alpha), and then let aerodynamic drag slow it to modest subsonic speed before deploying a drogue parachute.  Fin removal is essential to preclude lawn dart behavior.  
The high angle of attack aerodynamics of a slender body of revolution documented here are coded into JORGENSN.xls.
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Analysis


This memo documents the process used to estimate the high angle of attack aerodynamics of a body of revolution needed to support this kind of recovery scheme.  For the most part, this follows ref. (1).  The aerodynamics at alpha = 0 and 180 degrees are assumed to be generated off line in other codes.  There is no offline code to generate the aerodynamics at alpha = 90 degrees so this data is generated internally.


After estimating the aerodynamics as a function of angle of attack, JORGENSEN.xls finds the trim angle of attack and the associated trim drag coefficient. 
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In the sketch above, the two angle of attack regimes are displayed.  First, consider 
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and
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Before proceeding to the case of 
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 a discussion of how one might estimate the parameters in these equations is needed.  First, 
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 can be found from ref. (4).  
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 can be estimated from the codes in ref. (3).  There are two of these, one for subsonic flight and the other for supersonic flight.  The remaining aerodynamic parameters are for 
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 and will be discussed later.  The non-aerodynamic parameters, 
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 address the configuration under study.

For angles of attack > 90° the sketch above shows that the analysis is like that above with the ends swapped:
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Data for parameter estimation can be obtained as described above, except for the case of a blunt, flat-faced nose for which recourse to ref. (4) is needed.  While the drag for a blunt, flat-faced nose is easy to estimate from ref. (4), the associated normal force coefficient is not.  First, by definition, the flat face itself will not carry normal force near 
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°.  The question is, how much normal force is carried over to the cylindrical afterbody?  To answer this, consider a blunt cone-cylinder.  In subsonic flow, there is no cylinder normal force.  The same is true for hypersonic (Newtonian) flow.  In the limit as the cone approaches a flat face, this is expected to remain true.  Thus, in practice, assume zero 
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Finally, in general
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The conditions for static equilibrium, or trim, are that
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Broadside Aerodynamics

Start by defining the properties associated to the body profile:
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With these, the broadside center of pressure can be found:
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The broadside drag coefficient 
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 and its aspect ration correction factor 
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 are both represented as the product of two functions:
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Note that if 
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These functions are not known as analytical functions, but only in terms of their tabular values as derived from experiment in ref. (1)

With these results, we find that
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Typical Results

To better see how this works, consider a body with a biconic nose as sketched below flying at Mach number 2 with its center of gravity located 59 inches aft of the nose tip.
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The figure above shows that any trim angle of attack between 45°and 135°will give significant aerodynamic deceleration during reentry.  Two possible trim points in the figure are at a = 61.428° and 180°.  The former would provide acceptable capability, but not the latter.  Care must be taken to preclude this mode-it's very bad news.  


Finally, the pitching moment curve is very sensitive to CG location.  An inch either way on this 9 foot long body makes a significant change in the trim condition.
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